Weighted Poisson-Delaunay mosaics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Poisson–Delaunay Mosaics∗

Slicing a Voronoi tessellation in R with a k-plane gives a k-dimensional weighted Voronoi tessellation, also known as power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the k-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generate...

متن کامل

Vertex Numbers of Weighted Faces in Poisson Hyperplane Mosaics

In the random mosaic generated by a stationary Poisson hyperplane process in R, we consider the typical k-face weighted by the j-dimensional volume of the j-skeleton (0 ≤ j ≤ k ≤ d). We prove sharp lower and upper bounds for its expected number of vertices.

متن کامل

Random Inscribed Polytopes Have Similar Radius Functions as Poisson–Delaunay Mosaics∗

Using the geodesic distance on the n-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determine the expected number of intervals whose radii are less than or equal to a given threshold. Assuming the points are not contained in a hemisphere, t...

متن کامل

Expected Sizes of Poisson–Delaunay Mosaics and Their Discrete Morse Functions∗

Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from a Poisson point process in R, we study the expected number of simplices in the Delaunay mosaic as well as the expected number of critical simplices and non-singular intervals in the corresponding generalized d...

متن کامل

Large Cells in Poisson-Delaunay Tessellations

It is proved that the shape of the typical cell of a Delaunay tessellation, derived from a stationary Poisson point process in d-dimensional Euclidean space, tends to the shape of a regular simplex, given that the volume of the typical cell tends to infinity. This follows from an estimate for the probability that the typical cell deviates by a given amount from regularity, given that its volume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Теория вероятностей и ее применения

سال: 2019

ISSN: 0040-361X,2305-3151

DOI: 10.4213/tvp5196